568 research outputs found

    Detection of deuterium Balmer lines in the Orion Nebula

    Get PDF
    The detection and first identification of the deuterium Balmer emission lines, D-alpha and D-beta, in the core of the Orion Nebula is reported. Observations were conducted at the 3.6m Canada-France-Hawaii Telescope, using the Echelle spectrograph Gecko. These lines are very narrow and have identical 11 km/s velocity shifts with respect to H-alpha and H-beta. They are probably excited by UV continuum fluorescence from the Lyman (DI) lines and arise from the interface between the HII region and the molecular cloud.Comment: 4 pages, latex, 1 figure, 1 table, accepted for publication in Astronomy & Astrophysics, Letter

    Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]

    Full text link
    An error was detected in the code used for the analysis of the HD209458b sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C

    Rayleigh scattering in the transit spectrum of HD 189733b

    Get PDF
    The transit spectrum of the exoplanet HD 189733b has recently been obtained between 0.55 and 1.05 microns. Here we present an analysis of this spectrum. We develop first-order equations to interpret absorption spectra. In the case of HD 189733b, we show that the observed slope of the absorption as a function of wavelength is characteristic of extinction proportional to the inverse of the fourth power of the wavelength (lambda^-4). Assuming an extinction dominated by Rayleigh scattering, we derive an atmospheric temperature of 1340+/-150 K. If molecular hydrogen is responsible for the Rayleigh scattering, the atmospheric pressure at the planetary characteristic radius of 0.1564 stellar radius must be 410+/-30 mbar. However the preferred scenario is scattering by condensate particles. Using the Mie approximation, we find that the particles must have a low value for the imaginary part of the refraction index. We identify MgSiO3 as a possible abundant condensate whose particle size must be between 0.01 and 0.1 microns. For this condensate, assuming solar abundance, the pressure at 0.1564 stellar radius is found to be between a few microbars and few millibars, and the temperature is found to be in the range 1340-1540 K, and both depend on the particle size.Comment: Accepted for publication in A&A Lette

    New observations of the extended hydrogen exosphere of the extrasolar planet HD209458b

    Full text link
    Atomic hydrogen escaping from the planet HD209458b provides the largest observational signature ever detected for an extrasolar planet atmosphere. However, the Space Telescope Imaging Spectrograph (STIS) used in previous observational studies is no longer available, whereas additional observations are still needed to better constrain the mechanisms subtending the evaporation process, and determine the evaporation state of other `hot Jupiters'. Here, we aim to detect the extended hydrogen exosphere of HD209458b with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) and to find evidence for a hydrogen comet-like tail trailing the planet, which size would depend on the escape rate and the amount of ionizing radiation emitted by the star. These observations also provide a benchmark for other transiting planets, in the frame of a comparative study of the evaporation state of close-in giant planets. Eight HST orbits are used to observe two transits of HD209458b. Transit light curves are obtained by performing photometry of the unresolved stellar Lyman-alpha emission line during both transits. Absorption signatures of exospheric hydrogen during the transit are compared to light curve models predicting a hydrogen tail. Transit depths of (9.6 +/- 7.0)% and (5.3 +/- 10.0)% are measured on the whole Lyman-alpha line in visits 1 and 2, respectively. Averaging data from both visits, we find an absorption depth of (8.0 +/- 5.7)%, in good agreement with previous studies. The extended size of the exosphere confirms that the planet is likely loosing hydrogen to space. Yet, the photometric precision achieved does not allow us to better constrain the hydrogen mass loss rate.Comment: Accepted for publication in Astronomy & Astrophysics. 5 pages, 3 figure

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    Observation de la réponse de surfaces agricoles aux pluies par télédétection en hyperfréquence active aéroportée

    Get PDF
    La tĂ©lĂ©dĂ©tection active en hyperfrĂ©quence Ă  partir d'un radar aĂ©roportĂ© a Ă©tĂ© employĂ©e pour suivre le comportement hydrique de parcelles agricoles au cours des pĂ©riodes d'humectation et de ressuyage. On montre l'effet du travail du sol sur le signal rĂ©trodiffusĂ© et la capacitĂ© du radar Ă  mesurer l'humiditĂ© de surface du sol. L'utilisation de cette technique permet d'apprĂ©hender la variabilitĂ© spatiale de l'humiditĂ© des sols et la variabilitĂ© de comportement hydrique des surfaces agricoles en fonction du type de couvert vĂ©gĂ©tal et des travaux culturaux antĂ©cĂ©dents. A l'Ă©chelle du bassin versant, on obtient une indication concernant l'Ă©volution de l'Ă©tat hydrique moyen du sol, pouvant ĂȘtre reliĂ©e aux donnĂ©es de pluies et de dĂ©bits mesurĂ©s par ailleurs. On discute de l'intĂ©rĂȘt de cette mĂ©thode en hydrologie, Ă  partir des donnĂ©es des futurs satellites Ă©quipĂ©s de radar. (RĂ©sumĂ© d'auteur

    The Upper Atmosphere of HD17156b

    Full text link
    HD17156b is a newly-found transiting extrasolar giant planet (EGP) that orbits its G-type host star in a highly eccentric orbit (e~0.67) with an orbital semi-major axis of 0.16 AU. Its period, 21.2 Earth days, is the longest among the known transiting planets. The atmosphere of the planet undergoes a 27-fold variation in stellar irradiation during each orbit, making it an interesting subject for atmospheric modelling. We have used a three-dimensional model of the upper atmosphere and ionosphere for extrasolar gas giants in order to simulate the progress of HD17156b along its eccentric orbit. Here we present the results of these simulations and discuss the stability, circulation, and composition in its upper atmosphere. Contrary to the well-known transiting planet HD209458b, we find that the atmosphere of HD17156b is unlikely to escape hydrodynamically at any point along the orbit, even if the upper atmosphere is almost entirely composed of atomic hydrogen and H+, and infrared cooling by H3+ ions is negligible. The nature of the upper atmosphere is sensitive to to the composition of the thermosphere, and in particular to the mixing ratio of H2, as the availability of H2 regulates radiative cooling. In light of different simulations we make specific predictions about the thermosphere-ionosphere system of HD17156b that can potentially be verified by observations.Comment: 31 pages, 42 eps figure

    Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS

    Get PDF
    We present Hubble Space Telescope near-infrared transit photometry of the nearby hot-Jupiter HD189733b. The observations were taken with the NICMOS instrument during five transits, with three transits executed with a narrowband filter at 1.87 microns and two performed with a narrowband filter at 1.66 microns. Our observing strategy using narrowband filters is insensitive to the usual HST intra-orbit and orbit-to-orbit measurement of systematic errors, allowing us to accurately and robustly measure the near-IR wavelength dependance of the planetary radius. Our measurements fail to reproduce the Swain et al. absorption signature of atmospheric water below 2 microns at a 5-sigma confidence level. We measure a planet-to-star radius contrast of 0.15498+/-0.00035 at 1.66 microns and a contrast of 0.15517+/-0.00019 at 1.87 microns. Both of our near-IR planetary radii values are in excellent agreement with the levels expected from Rayleigh scattering by sub-micron haze particles, observed at optical wavelengths, indicating that upper-atmospheric haze still dominates the near-IR transmission spectra over the absorption from gaseous molecular species at least below 2 microns.Comment: 9 pages, 7 figures. Accepted for publication in A&
    • 

    corecore